home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Software of the Month Club 2000 October
/
Software of the Month - Ultimate Collection Shareware 277.iso
/
pc
/
PROGRAMS
/
UTILITY
/
WINLINUX
/
DATA1.CAB
/
programs_-_include
/
LINUX
/
SCHED.H
< prev
next >
Wrap
C/C++ Source or Header
|
1999-09-17
|
21KB
|
756 lines
#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H
#include <asm/param.h> /* for HZ */
extern unsigned long event;
#include <linux/binfmts.h>
#include <linux/personality.h>
#include <linux/tasks.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/times.h>
#include <linux/timex.h>
#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>
#include <linux/smp.h>
#include <linux/tty.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/securebits.h>
/*
* cloning flags:
*/
#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
#define CLONE_VM 0x00000100 /* set if VM shared between processes */
#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
#define CLONE_SIGHAND 0x00000800 /* set if signal handlers shared */
#define CLONE_PID 0x00001000 /* set if pid shared */
#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
/*
* These are the constant used to fake the fixed-point load-average
* counting. Some notes:
* - 11 bit fractions expand to 22 bits by the multiplies: this gives
* a load-average precision of 10 bits integer + 11 bits fractional
* - if you want to count load-averages more often, you need more
* precision, or rounding will get you. With 2-second counting freq,
* the EXP_n values would be 1981, 2034 and 2043 if still using only
* 11 bit fractions.
*/
extern unsigned long avenrun[]; /* Load averages */
#define FSHIFT 11 /* nr of bits of precision */
#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
#define LOAD_FREQ (5*HZ) /* 5 sec intervals */
#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
#define EXP_5 2014 /* 1/exp(5sec/5min) */
#define EXP_15 2037 /* 1/exp(5sec/15min) */
#define CALC_LOAD(load,exp,n) \
load *= exp; \
load += n*(FIXED_1-exp); \
load >>= FSHIFT;
#define CT_TO_SECS(x) ((x) / HZ)
#define CT_TO_USECS(x) (((x) % HZ) * 1000000/HZ)
extern int nr_running, nr_tasks;
extern int last_pid;
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/timer.h>
#include <asm/processor.h>
#define TASK_RUNNING 0
#define TASK_INTERRUPTIBLE 1
#define TASK_UNINTERRUPTIBLE 2
#define TASK_ZOMBIE 4
#define TASK_STOPPED 8
#define TASK_SWAPPING 16
/*
* Scheduling policies
*/
#define SCHED_OTHER 0
#define SCHED_FIFO 1
#define SCHED_RR 2
/*
* This is an additional bit set when we want to
* yield the CPU for one re-schedule..
*/
#define SCHED_YIELD 0x10
struct sched_param {
int sched_priority;
};
#ifndef NULL
#define NULL ((void *) 0)
#endif
#ifdef __KERNEL__
#include <asm/spinlock.h>
/*
* This serializes "schedule()" and also protects
* the run-queue from deletions/modifications (but
* _adding_ to the beginning of the run-queue has
* a separate lock).
*/
extern rwlock_t tasklist_lock;
extern spinlock_t scheduler_lock;
extern spinlock_t runqueue_lock;
extern void sched_init(void);
extern void show_state(void);
extern void trap_init(void);
#define MAX_SCHEDULE_TIMEOUT LONG_MAX
extern signed long FASTCALL(schedule_timeout(signed long timeout));
asmlinkage void schedule(void);
/*
* Open file table structure
*/
struct files_struct {
atomic_t count;
int max_fds;
struct file ** fd; /* current fd array */
fd_set close_on_exec;
fd_set open_fds;
};
#define INIT_FILES { \
ATOMIC_INIT(1), \
NR_OPEN, \
&init_fd_array[0], \
{ { 0, } }, \
{ { 0, } } \
}
struct fs_struct {
atomic_t count;
int umask;
struct dentry * root, * pwd;
};
#define INIT_FS { \
ATOMIC_INIT(1), \
0022, \
NULL, NULL \
}
/* Maximum number of active map areas.. This is a random (large) number */
#define MAX_MAP_COUNT (65536)
/* Number of map areas at which the AVL tree is activated. This is arbitrary. */
#define AVL_MIN_MAP_COUNT 32
struct mm_struct {
struct vm_area_struct *mmap; /* list of VMAs */
struct vm_area_struct *mmap_avl; /* tree of VMAs */
struct vm_area_struct *mmap_cache; /* last find_vma result */
pgd_t * pgd;
atomic_t count;
int map_count; /* number of VMAs */
struct semaphore mmap_sem;
unsigned long context;
unsigned long start_code, end_code, start_data, end_data;
unsigned long start_brk, brk, start_stack;
unsigned long arg_start, arg_end, env_start, env_end;
unsigned long rss, total_vm, locked_vm;
unsigned long def_flags;
unsigned long cpu_vm_mask;
unsigned long swap_cnt; /* number of pages to swap on next pass */
unsigned long swap_address;
/*
* This is an architecture-specific pointer: the portable
* part of Linux does not know about any segments.
*/
void * segments;
};
#define INIT_MM { \
&init_mmap, NULL, NULL, \
swapper_pg_dir, \
ATOMIC_INIT(1), 1, \
MUTEX, \
0, \
0, 0, 0, 0, \
0, 0, 0, \
0, 0, 0, 0, \
0, 0, 0, \
0, 0, 0, 0, NULL }
struct signal_struct {
atomic_t count;
struct k_sigaction action[_NSIG];
spinlock_t siglock;
};
#define INIT_SIGNALS { \
ATOMIC_INIT(1), \
{ {{0,}}, }, \
SPIN_LOCK_UNLOCKED }
/*
* Some day this will be a full-fledged user tracking system..
* Right now it is only used to track how many processes a
* user has, but it has the potential to track memory usage etc.
*/
struct user_struct;
struct task_struct {
/* these are hardcoded - don't touch */
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
unsigned long flags; /* per process flags, defined below */
int sigpending;
mm_segment_t addr_limit; /* thread address space:
0-0xBFFFFFFF for user-thead
0-0xFFFFFFFF for kernel-thread
*/
struct exec_domain *exec_domain;
long need_resched;
/* various fields */
long counter;
long priority;
cycles_t avg_slice;
/* SMP and runqueue state */
int has_cpu;
int processor;
int last_processor;
int lock_depth; /* Lock depth. We can context switch in and out of holding a syscall kernel lock... */
struct task_struct *next_task, *prev_task;
struct task_struct *next_run, *prev_run;
/* task state */
struct linux_binfmt *binfmt;
int exit_code, exit_signal;
int pdeath_signal; /* The signal sent when the parent dies */
/* ??? */
unsigned long personality;
int dumpable:1;
int did_exec:1;
pid_t pid;
pid_t pgrp;
pid_t tty_old_pgrp;
pid_t session;
/* boolean value for session group leader */
int leader;
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->p_pptr->pid)
*/
struct task_struct *p_opptr, *p_pptr, *p_cptr, *p_ysptr, *p_osptr;
/* PID hash table linkage. */
struct task_struct *pidhash_next;
struct task_struct **pidhash_pprev;
/* Pointer to task[] array linkage. */
struct task_struct **tarray_ptr;
struct wait_queue *wait_chldexit; /* for wait4() */
struct semaphore *vfork_sem; /* for vfork() */
unsigned long policy, rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
struct tms times;
unsigned long start_time;
long per_cpu_utime[NR_CPUS], per_cpu_stime[NR_CPUS];
/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:1;
/* process credentials */
uid_t uid,euid,suid,fsuid;
gid_t gid,egid,sgid,fsgid;
int ngroups;
gid_t groups[NGROUPS];
kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
struct user_struct *user;
/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
/* file system info */
int link_count;
struct tty_struct *tty; /* NULL if no tty */
/* ipc stuff */
struct sem_undo *semundo;
struct sem_queue *semsleeping;
/* tss for this task */
struct thread_struct tss;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* memory management info */
struct mm_struct *mm;
/* signal handlers */
spinlock_t sigmask_lock; /* Protects signal and blocked */
struct signal_struct *sig;
sigset_t signal, blocked;
struct signal_queue *sigqueue, **sigqueue_tail;
unsigned long sas_ss_sp;
size_t sas_ss_size;
};
/*
* Per process flags
*/
#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
/* Not implemented yet, only for 486*/
#define PF_STARTING 0x00000002 /* being created */
#define PF_EXITING 0x00000004 /* getting shut down */
#define PF_PTRACED 0x00000010 /* set if ptrace (0) has been called */
#define PF_TRACESYS 0x00000020 /* tracing system calls */
#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
#define PF_DUMPCORE 0x00000200 /* dumped core */
#define PF_SIGNALED 0x00000400 /* killed by a signal */
#define PF_MEMALLOC 0x00000800 /* Allocating memory */
#define PF_VFORK 0x00001000 /* Wake up parent in mm_release */
#define PF_USEDFPU 0x00100000 /* task used FPU this quantum (SMP) */
#define PF_DTRACE 0x00200000 /* delayed trace (used on m68k, i386) */
/*
* Limit the stack by to some sane default: root can always
* increase this limit if needed.. 8MB seems reasonable.
*/
#define _STK_LIM (8*1024*1024)
#define DEF_PRIORITY (20*HZ/100) /* 210 ms time slices */
/*
* INIT_TASK is used to set up the first task table, touch at
* your own risk!. Base=0, limit=0x1fffff (=2MB)
*/
#define INIT_TASK \
/* state etc */ { 0,0,0,KERNEL_DS,&default_exec_domain,0, \
/* counter */ DEF_PRIORITY,DEF_PRIORITY,0, \
/* SMP */ 0,0,0,-1, \
/* schedlink */ &init_task,&init_task, &init_task, &init_task, \
/* binfmt */ NULL, \
/* ec,brk... */ 0,0,0,0,0,0, \
/* pid etc.. */ 0,0,0,0,0, \
/* proc links*/ &init_task,&init_task,NULL,NULL,NULL, \
/* pidhash */ NULL, NULL, \
/* tarray */ &task[0], \
/* chld wait */ NULL, NULL, \
/* timeout */ SCHED_OTHER,0,0,0,0,0,0,0, \
/* timer */ { NULL, NULL, 0, 0, it_real_fn }, \
/* utime */ {0,0,0,0},0, \
/* per CPU times */ {0, }, {0, }, \
/* flt */ 0,0,0,0,0,0, \
/* swp */ 0, \
/* process credentials */ \
/* uid etc */ 0,0,0,0,0,0,0,0, \
/* suppl grps*/ 0, {0,}, \
/* caps */ CAP_INIT_EFF_SET,CAP_INIT_INH_SET,CAP_FULL_SET, \
/* user */ NULL, \
/* rlimits */ INIT_RLIMITS, \
/* math */ 0, \
/* comm */ "swapper", \
/* fs info */ 0,NULL, \
/* ipc */ NULL, NULL, \
/* tss */ INIT_TSS, \
/* fs */ &init_fs, \
/* files */ &init_files, \
/* mm */ &init_mm, \
/* signals */ SPIN_LOCK_UNLOCKED, &init_signals, {{0}}, {{0}}, NULL, &init_task.sigqueue, 0, 0, \
}
union task_union {
struct task_struct task;
unsigned long stack[2048];
};
extern union task_union init_task_union;
extern struct mm_struct init_mm;
extern struct task_struct *task[NR_TASKS];
extern struct task_struct **tarray_freelist;
extern spinlock_t taskslot_lock;
extern __inline__ void add_free_taskslot(struct task_struct **t)
{
spin_lock(&taskslot_lock);
*t = (struct task_struct *) tarray_freelist;
tarray_freelist = t;
spin_unlock(&taskslot_lock);
}
extern __inline__ struct task_struct **get_free_taskslot(void)
{
struct task_struct **tslot;
spin_lock(&taskslot_lock);
if((tslot = tarray_freelist) != NULL)
tarray_freelist = (struct task_struct **) *tslot;
spin_unlock(&taskslot_lock);
return tslot;
}
/* PID hashing. */
#define PIDHASH_SZ (NR_TASKS >> 2)
extern struct task_struct *pidhash[PIDHASH_SZ];
#define pid_hashfn(x) ((((x) >> 8) ^ (x)) & (PIDHASH_SZ - 1))
extern __inline__ void hash_pid(struct task_struct *p)
{
struct task_struct **htable = &pidhash[pid_hashfn(p->pid)];
if((p->pidhash_next = *htable) != NULL)
(*htable)->pidhash_pprev = &p->pidhash_next;
*htable = p;
p->pidhash_pprev = htable;
}
extern __inline__ void unhash_pid(struct task_struct *p)
{
if(p->pidhash_next)
p->pidhash_next->pidhash_pprev = p->pidhash_pprev;
*p->pidhash_pprev = p->pidhash_next;
}
extern __inline__ struct task_struct *find_task_by_pid(int pid)
{
struct task_struct *p, **htable = &pidhash[pid_hashfn(pid)];
for(p = *htable; p && p->pid != pid; p = p->pidhash_next)
;
return p;
}
/* per-UID process charging. */
extern int alloc_uid(struct task_struct *p);
void free_uid(struct task_struct *p);
#include <asm/current.h>
extern unsigned long volatile jiffies;
extern unsigned long itimer_ticks;
extern unsigned long itimer_next;
extern struct timeval xtime;
extern void do_timer(struct pt_regs *);
extern unsigned int * prof_buffer;
extern unsigned long prof_len;
extern unsigned long prof_shift;
#define CURRENT_TIME (xtime.tv_sec)
extern void FASTCALL(__wake_up(struct wait_queue ** p, unsigned int mode));
extern void FASTCALL(sleep_on(struct wait_queue ** p));
extern long FASTCALL(sleep_on_timeout(struct wait_queue ** p,
signed long timeout));
extern void FASTCALL(interruptible_sleep_on(struct wait_queue ** p));
extern long FASTCALL(interruptible_sleep_on_timeout(struct wait_queue ** p,
signed long timeout));
extern void FASTCALL(wake_up_process(struct task_struct * tsk));
#define wake_up(x) __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE)
#define wake_up_interruptible(x) __wake_up((x),TASK_INTERRUPTIBLE)
extern int in_group_p(gid_t grp);
extern void flush_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *);
extern int dequeue_signal(sigset_t *block, siginfo_t *);
extern int send_sig_info(int, struct siginfo *info, struct task_struct *);
extern int force_sig_info(int, struct siginfo *info, struct task_struct *);
extern int kill_pg_info(int, struct siginfo *info, pid_t);
extern int kill_sl_info(int, struct siginfo *info, pid_t);
extern int kill_proc_info(int, struct siginfo *info, pid_t);
extern int kill_something_info(int, struct siginfo *info, int);
extern void notify_parent(struct task_struct * tsk, int);
extern void force_sig(int sig, struct task_struct * p);
extern int send_sig(int sig, struct task_struct * p, int priv);
extern int kill_pg(pid_t, int, int);
extern int kill_sl(pid_t, int, int);
extern int kill_proc(pid_t, int, int);
extern int do_sigaction(int sig, const struct k_sigaction *act,
struct k_sigaction *oact);
extern int do_sigaltstack(const stack_t *ss, stack_t *oss, unsigned long sp);
extern inline int signal_pending(struct task_struct *p)
{
return (p->sigpending != 0);
}
/* Reevaluate whether the task has signals pending delivery.
This is required every time the blocked sigset_t changes.
All callers should have t->sigmask_lock. */
static inline void recalc_sigpending(struct task_struct *t)
{
unsigned long ready;
long i;
switch (_NSIG_WORDS) {
default:
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
ready |= t->signal.sig[i] &~ t->blocked.sig[i];
break;
case 4: ready = t->signal.sig[3] &~ t->blocked.sig[3];
ready |= t->signal.sig[2] &~ t->blocked.sig[2];
ready |= t->signal.sig[1] &~ t->blocked.sig[1];
ready |= t->signal.sig[0] &~ t->blocked.sig[0];
break;
case 2: ready = t->signal.sig[1] &~ t->blocked.sig[1];
ready |= t->signal.sig[0] &~ t->blocked.sig[0];
break;
case 1: ready = t->signal.sig[0] &~ t->blocked.sig[0];
}
t->sigpending = (ready != 0);
}
/* True if we are on the alternate signal stack. */
static inline int on_sig_stack(unsigned long sp)
{
return (sp >= current->sas_ss_sp
&& sp < current->sas_ss_sp + current->sas_ss_size);
}
static inline int sas_ss_flags(unsigned long sp)
{
return (current->sas_ss_size == 0 ? SS_DISABLE
: on_sig_stack(sp) ? SS_ONSTACK : 0);
}
extern int request_irq(unsigned int irq,
void (*handler)(int, void *, struct pt_regs *),
unsigned long flags,
const char *device,
void *dev_id);
extern void free_irq(unsigned int irq, void *dev_id);
/*
* This has now become a routine instead of a macro, it sets a flag if
* it returns true (to do BSD-style accounting where the process is flagged
* if it uses root privs). The implication of this is that you should do
* normal permissions checks first, and check suser() last.
*
* [Dec 1997 -- Chris Evans]
* For correctness, the above considerations need to be extended to
* fsuser(). This is done, along with moving fsuser() checks to be
* last.
*
* These will be removed, but in the mean time, when the SECURE_NOROOT
* flag is set, uids don't grant privilege.
*/
extern inline int suser(void)
{
if (!issecure(SECURE_NOROOT) && current->euid == 0) {
current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
extern inline int fsuser(void)
{
if (!issecure(SECURE_NOROOT) && current->fsuid == 0) {
current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
/*
* capable() checks for a particular capability.
* New privilege checks should use this interface, rather than suser() or
* fsuser(). See include/linux/capability.h for defined capabilities.
*/
extern inline int capable(int cap)
{
#if 1 /* ok now */
if (cap_raised(current->cap_effective, cap))
#else
if (cap_is_fs_cap(cap) ? current->fsuid == 0 : current->euid == 0)
#endif
{
current->flags |= PF_SUPERPRIV;
return 1;
}
return 0;
}
/*
* Routines for handling mm_structs
*/
extern struct mm_struct * mm_alloc(void);
static inline void mmget(struct mm_struct * mm)
{
atomic_inc(&mm->count);
}
extern void mmput(struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(void);
extern int copy_thread(int, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);
extern void exit_mm(struct task_struct *);
extern void exit_fs(struct task_struct *);
extern void exit_files(struct task_struct *);
extern void exit_sighand(struct task_struct *);
extern int do_execve(char *, char **, char **, struct pt_regs *);
extern int do_fork(unsigned long, unsigned long, struct pt_regs *);
/*
* The wait-queues are circular lists, and you have to be *very* sure
* to keep them correct. Use only these two functions to add/remove
* entries in the queues.
*/
extern inline void __add_wait_queue(struct wait_queue ** p, struct wait_queue * wait)
{
wait->next = *p ? : WAIT_QUEUE_HEAD(p);
*p = wait;
}
extern rwlock_t waitqueue_lock;
extern inline void add_wait_queue(struct wait_queue ** p, struct wait_queue * wait)
{
unsigned long flags;
write_lock_irqsave(&waitqueue_lock, flags);
__add_wait_queue(p, wait);
write_unlock_irqrestore(&waitqueue_lock, flags);
}
extern inline void __remove_wait_queue(struct wait_queue ** p, struct wait_queue * wait)
{
struct wait_queue * next = wait->next;
struct wait_queue * head = next;
struct wait_queue * tmp;
while ((tmp = head->next) != wait) {
head = tmp;
}
head->next = next;
}
extern inline void remove_wait_queue(struct wait_queue ** p, struct wait_queue * wait)
{
unsigned long flags;
write_lock_irqsave(&waitqueue_lock, flags);
__remove_wait_queue(p, wait);
write_unlock_irqrestore(&waitqueue_lock, flags);
}
#define __wait_event(wq, condition) \
do { \
struct wait_queue __wait; \
\
__wait.task = current; \
add_wait_queue(&wq, &__wait); \
for (;;) { \
current->state = TASK_UNINTERRUPTIBLE; \
if (condition) \
break; \
schedule(); \
} \
current->state = TASK_RUNNING; \
remove_wait_queue(&wq, &__wait); \
} while (0)
#define wait_event(wq, condition) \
do { \
if (condition) \
break; \
__wait_event(wq, condition); \
} while (0)
#define __wait_event_interruptible(wq, condition, ret) \
do { \
struct wait_queue __wait; \
\
__wait.task = current; \
add_wait_queue(&wq, &__wait); \
for (;;) { \
current->state = TASK_INTERRUPTIBLE; \
if (condition) \
break; \
if (!signal_pending(current)) { \
schedule(); \
continue; \
} \
ret = -ERESTARTSYS; \
break; \
} \
current->state = TASK_RUNNING; \
remove_wait_queue(&wq, &__wait); \
} while (0)
#define wait_event_interruptible(wq, condition) \
({ \
int __ret = 0; \
if (!(condition)) \
__wait_event_interruptible(wq, condition, __ret); \
__ret; \
})
#define REMOVE_LINKS(p) do { \
(p)->next_task->prev_task = (p)->prev_task; \
(p)->prev_task->next_task = (p)->next_task; \
if ((p)->p_osptr) \
(p)->p_osptr->p_ysptr = (p)->p_ysptr; \
if ((p)->p_ysptr) \
(p)->p_ysptr->p_osptr = (p)->p_osptr; \
else \
(p)->p_pptr->p_cptr = (p)->p_osptr; \
} while (0)
#define SET_LINKS(p) do { \
(p)->next_task = &init_task; \
(p)->prev_task = init_task.prev_task; \
init_task.prev_task->next_task = (p); \
init_task.prev_task = (p); \
(p)->p_ysptr = NULL; \
if (((p)->p_osptr = (p)->p_pptr->p_cptr) != NULL) \
(p)->p_osptr->p_ysptr = p; \
(p)->p_pptr->p_cptr = p; \
} while (0)
#define for_each_task(p) \
for (p = &init_task ; (p = p->next_task) != &init_task ; )
#endif /* __KERNEL__ */
#endif